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Laminar flow of a liquid in a channel of arbitrary shape is examined
with account for interaction of the boundary layer with the core. A
simple approximate method is described for calculating the boundary
layer in a channel with arbitrary generator,

Integral methods permit a quite simple calculation
of the boundary layer in the case of the external prob-
lem (flow over a body). In principle, these methods
may also be applied to the internal problem (flow in
channels), In this case, however, difficulties arise
from the need to calculate the interaction between the
boundary layer and the external flow. The interaction
is usually calculated by the method of successive ap~
proximations {1, 2]. Several iterations may be neces-
sary in a number of problems, in order to obtain the
requisite accuracy, or it may even be necessary to
apply the method not to the channel as a whole, but
to its separate parts. This applies particularly to the
design of diffusors [2].

In the present paper the problem of flow of a liquid
in a channel is solved with allowance for interaction
by reducing the characteristic system of equations to
a gingle integro-differential equation. For channels
with straight generators the equation obtained has been
solved numerically on an electronic computer, Com-
parison of the results of the calculation with data ob-
tained without allowance for interaction permits an as-
sessment of the back effect of the boundary layer on
the external flow. Relations have been established for
the point of separation and the point at which boundary
layers on opposite sides merge. We have constructed
a simple approximate method of calculating the bound-
ary layer with allowance for interaction in a plane or
axisymmetric channel of arbitrary shape., The prob-
lem for a turbulent boundary layer may be solved sim-
ilarly,

Let us examine the flow in a plane symmetric chan-
nel of arbitrary shape in the case when the boundary
layers do not meet at the entrance. In writing the
boundary layer equations, it is usual to take the longi-
tudinal coordinate along the wall, and the transverse
one in a direction perpendicular to it (coordinates x',
y'). For the internal problem it is more convenient,
however, to have a coordinate system x, y in which
the x axis coincides with the axis of symmetry. It is
easily verified that at the wall slope angles usually
encountered, the equations written in the two systems
practically coincide, and the pressure change along
the y axis may be neglected, if we consider, as is
usual, that the pressure along the y' axis in the bound-
ary layer is constant (9p/8y' = 0). In fact, considering,
for simplicity, a channel with a straight wall (Fig. 1)

inclined at an angle ®/2 to the axis, we have
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Fig. 1. Dependence of the dimensionless coordi-

nates of the separation point ggep and of the meet~

ing point of the boundary layers < = y/ x/i Re On the

number K = Retg (8,2): 1) separation region; 2) and

3) regions where the boundary layers have and
have not merged.

If we further assume that
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then for the pressure change in the y direction, with
boundary layer thickness 6, we obtain the following
estimate:
Ap
aU*

N>|®

8
= — ig®
A g

Even when 6/h = 1 and the diffusor angle ® = 20°, this
quantity is equal to 3%. It may similarly be verified
that the momentum equation written in x, y coordinates
coincides with its usual form correct to cos (©/2).

Then to calculate the boundary layer we have the
following system of equations:
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If some one-parameter method is used, the mo-
mentum equation (1) can be linearized and its solu~
tion represented in the form [3]
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Fig. 2. Dependence of 6* on ¢ = x/hfy Re and K: 1) sep-
aration; 2) meeting; 3) no meeting; broken lines—values
of K.

where ¢ and b are constants, and subsecript H refers
to the entrance section of the channel. The system of
Egs. (2) and (3) contains three unknowns: U, 6% and
6** It is necessary to use the dependence of the quan-
tity H = 6%/6%* on some shape factor as the missing
equation. The most convepient shape factor proved to
be that determined by the displacement thickness §%*,

g = U8, 4)

Calculations carried out for four different sets of
boundary layer velocity profiles (profiles obtained
from exact solutions for linear and power-law veloc—
ity distributions in the external flow, and profiles rep-
resented by a polynomial of fourth degree and by the
polynomial proposed in [4]) show that the dependence
of H*(g) may be approximated with sufficient accuracy
by the straight line

H? = ¢, —cog (= 0.149; ¢, = 0.07). (5)

Using equalities (2), (4), and (5), and introducing
the new variables

2=QhalU =k (1 —3), ¢=x/Re, (6)

we obtain, after transformation, in place of (3) the
following integro-differential equation:
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which must be solved under the boundary condition

cp'-O, z=1—8H.

For a given channel shape h = h(X) and entrance con-
ditions (611; off), Edq. (7) determines the quantity z,
and therefore &*,

Values of the constants ¢ and b in (7) are deter-
mined by the selected one-parameter method of cal-
culating the boundary layer. The choice of method,

generally speaking, cannot be very important, since
it is known [3] that different one-parameter methods
give quite close results, except in the region close to
separation., Nevertheless, to increase the reliability
of the calculations in this region too, preference
should be given to a method based on the set of pro-
files obtained for some particular problem close to
that considered. For this reason, we shall use the
method which employs the set of profiles in a flow
with a linear velocity law in the external stream, This
flow may be regarded as a flow in some channel {5].
Accordingly, it has been assumed [8] that a = 0.44;
b =6,

Let us examine the case when the channel genera-
tors are straight lines and form an angle ®, Then

where
K = Retg % , (8)

and K > 0 corresponds to an expanding, K < 0 to a
contracting channel, If the profile at the channel en-
trance is uniform (8x = 8y = 0), the third term in (7)
vanishes, and (7) assumes the form

0.14922 (1 + K¢ — 2 —

®
007 (14 Kg—28—0.442° j 48 _ o (9
do b
0
In this simplest case z proves to depend only on the
single parameter K and may conveniently be tabulated.
Equation (9) was integrated numerically on a compu-~
ter. * To perform the calculations it was convenient
to go over to the new variable

o 1/(‘—) = }r’/,\‘/h}/ Re (10)

*The calculations were made by my junior scientific
associate, O. D, Lipovetska.
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and to replace (9) by the system

:I _(i1693(1“'” K o —~’2);-0"2“(u Y *i . (11)
0.03976 (1 - K o* — 2)* ¢

where the primes denote differentiation with respect
to o, and the integral appearing in (9) is denoted by w.
The boundary condition then takes the form o= 0, z =
=1, w =0, At the point o = 0 the first equality in (11)
does not permit determination of the value of z, and
therefore a numerical calculation is possible only
from a certain oy > 0 on, Near o = 0 the solution of

(9) may be represented by the series

z==1— 1.71850 +-(4.962 + K)o? —
—(28.327 + 4.199K) ¢ +(246.86 -~ 37.785K) 0* —
—(3279.6 -+ 326.93K + 8.432K% 0> + ...  (12)

The calculation was performed either up to the sep-
aration point, or to the meeting point of the boundary
layers. Then the separation point was determined by
the separation value of the shape factor (4), g = 1.232,
and the meeting point of the boundary layers by the
dimensionless value of the boundary layer thickness
6/h =1, To find the latier we used the relation

8%/6 = 0.34 + 0.16g,

found with the help of the set of profiles corresponding
to a power-law velocity distribution in the external

flow,
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Fig. 3. Graph for determining 5% (1-3—see Fig. 2;
broken lines—values of K).

It can be seen from Fig. 1 that the boundary layers
meet when K < 14, Calculation shows that in channels
with K < —-16, the boundary layers merge close to the
point where the walls of the convergent channel con-
verge, so that in practice it may be assumed that in
these channels the layers do not meet, When K > 14,
separation of the boundary layer occurs before the
layers have come together. All three regions are in-
dicated in Fig. 1, the curve in the region K < —16 giv-
ing the dependence of the coordinate of the point at
which the walls of the convergent channel come to-
gether on K. Approximating to the curves given in
Fig. 1, we obtain the following formulas for the co-
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ordinates of the meeting and separation points:
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where [; is the coordinate of the meeting point for a
plane tube.
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Fig. 4. Back action of boundary layer in
various channels (1~3--see Fig, 2; broken
lines—values of ¢).

Figures 2 and 3 show the results of calculations
of the displacement thickness 8 = &/k and the de-
rivative 8 = d 8 /do. Using these data, it is not dif-
ficult to determine all the required properties of the
flow in the channel. The dimensionless static pres-

sure p =p—py, / P g;’ at any section of the channel

may be computed from the formula

—_ -2 —_—
p=1-—Uh (1—=0).

The value of the dimensionless pressure p at the end

of the channel determines the recovery pressure co-

efficient n, and therefore the value of the total loss

coefficient (including outlet velocity losses)
E,=1—m

The loss coefficient inside the channel may be cal-
culated from the formula {1}
E=8 /(1 —38 ) (15)
The value of 5%*¥* in this equality may be found with
the aid of the relation [7}
58 =06—017g.

The shape factor g is then given by the equality

. —

8 ’ =y 6
L —8) - =1, 16
£ (1—38r [K(l . 120} a6

The calculated dimensionless static pressure Psep
at the separation point is as follows:
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K = Retg — 14 20 30. 40
,,’?SeP 0.29 0.29 |0.29 [0.30
50 | 75 | 100 | 200 | 300
0.30 | 0.31 | 0.30 0‘295 0.29

It can be seen from these data that Pgep is prac-
tically constant and does not depend on the Re num-
ber, nor on the divergence angle ® of the diffusor,
This fact can evidently be used for an experimental
determination of the separation point. It is seen from
the table that for the laminar flow case examined

Psep™ 0.3.

Figure 4 compares calculations made with and with-
out allowance for the back action of the boundary layer.
Here 6,* denotes the value of 6* found without allow-
ance for the back action of the boundary layer, under
the common assumption that H does not depend on the
pressure gradient. It can be seen from Fig. 4 that the
back action is very different in the different flows. In
certain cases failure to allow for the back action may
lead to a value of 6* that is considerably too high (a
factor of three), while in other cases (K < 0) the back
action proves to be comparatively insignificant, It
grows with distance from the entrance section and is
greatest for channels with 0 < K < 30,

Let us now examine the general case when the chan-
nel generators are curved, It is then necessary, gen-
erally speaking, to integrate (7) numerically. It is
possible, however, on the basis of the graphs present-
ed above, to counstruct a simple approximate method
of calculation, if we make the usual assumption on
which the one-parameter methods are based. Accord-
ing to this assumption, we assume that over length dx
in an arbitrary channel, the boundary layer develops
in the same way as on some section of a channel with
straight generators, provided that one of the charac-
teristic dimensionless boundary layer thicknesses
(e.g., o*) and the quantity K = Re tg (®/2) have iden-
tical values for both sections. This assumption, with
the aid of the graph of Fig, 2, allows us to determine
approximately the value of 6% at any section of a chan-
nel of arbitrary shape. For this purpose we divide the
channel into small segments within which the angle
® (and thus K) may be considered constant. Knowing
the values 5,* and K, at the beginning of the first seg-
ment, we can find the corresponding point 1 on the
graph (Fig. 2). By moving a distance Agy (dimension—
less length of the first segment) along the curve K =
= const through the point 1, we find the value &.* at
the start of the next segment. Moving further along
the horizontal to the curve K = const, corresponding
to K,, we find the point 2 corresponding to the start
of the second segment, Moving along the curve K =
= const a distance Ag,, we find the value of §3* at the
start of the third segment, and so on, The value of
the shape factor at any section of the channel may be
determined from the formula, analogous to (16),
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the value 5% being determined with the aid of Fig, 3
from the known &* and K. Knowing §* and g, it is easy
to determine the separation point, the meeting point
of the layers, and all the other necessary quantities.

The results obtained may also be used to calculate
axisymmetric channels. If, as is usual, we neglect
the influence of transverse channel curvature, the
system of equations for this case may be written in
the form

dA™ 1 dU . T
— B A4+ HY=92R S (17
dx U dx AT@+H) R o U2 an

]

5 (18)

Q=

where

: R R
At=2 | (1— ) s Aam=2 | 2 1_i)rdr.
U U U
[} [1]

By introducing variables similar to those of Stepanov

(8]

x=4 | R@Odt, yy =1 k=R, Qu="2Q/n, (19)
0
the case under examination reduces to the plane one,
and the system (17), (18) to (1), (2), while
b= AR, B =AT/RY, Ty =Tup R.

If the channel profile is given in the form R = R{x),
then, after computing xp], b, ?p1 and
Q epl Q 1

L1 LS LI SR
K vg2 m?RgQ’

we perform the calculation for the equivalent plane
channel, by dividing it into segments with constant
values of K. The values found for the characteristic
dimensionless thicknesses 8, 1 at any section of the
plane channel with coordinate X,; are numerically
equal to the corresponding values of dimensionless
areas A/R? in the axisymmetric channel at the sec-
tion with coordinate x, which is related to Xpl by the
first of equations (19).

NOTATTON

X, ¥, X', y' are the coordinates (Fig.1); ® is the
angle between channel walls; p is the pressure; p is
the density; U is the flow velocity in potential core;

h is the half-height of channel; h = h/hy is the dimen~
sionless channel height; R, r are the outside and vari-
able radii of channel section; Q is the half-mass flow-
rate of liguid; 6 is the boundary layer thickness; 6 *
is the displacement thickness; 6** is the momentum
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thickness; 6*** is the energy thickness; 6% = 6*/h,
5%* = §**/h are the dimensionless displacement and
momentum thicknesses; p=p - pH/pU%1 is the dimen-
sionless static pressure; A* is the displacement area;
A** ig the momentum area; A*** g the energy area;
Tw is the friction stress at wall; v is the kinematic
viscosity; Re = Q/v is the Reynolds number; n is the
channel expansion ratio.
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